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* ABSTRACT

The main purpose of this work is to give explicit sparsity-

preserving SOR (successive overrelaxation) algorithms for the solution

of separable quadratic and linear programming problems. The principal

and computationally distinguishing feature of the present SOR algorithms

is that they preserve the sparsity structure of the problem and do not

require the computation of the product of the constraint matrix by its

transpose as is the case in earlier SOR algorithms for linear and

quadratic programming.
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SIGNIFICANCE AND EXPLANATION

Many important optimization problems have linear constraints and

objective functions which are quadratic or linear. Very often these

problems are very large but sparse. Conventional methods such as the

simplex method and other pivotal methods may not be able to handle

such problems because of their size and because the sparsity structure

of the problem may be quickly lost when these methods are used. We

propose here a different class of methods, successive overrelaxation

(SOR) methods, which can handle large problems while preserving their

sparsity. SOR methods have been widely and successfully used in the

solution of linear systems of equations, but rarely in the solution of

optimization problems.

.q

The responsibility for wording and views expressed in this descriptive

summary lies with MRC, and not with the author of this report.
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SPARSITY-PRESERVING SOR ALGORITHMS
FOR SEPARABLE QUADRATIC AND LINEAR PROGRAMMING

0. L. Mangasarian

1. Introduction

Recently iterative SOR methods have received widespread attention

in the solution of the symmetric and nonsymmetric linear complementarity

problem [4,6,3,11,15,16,1], quadratic and linear programming problems

(12,13]. In the case of the latter two problems which are our principal

concerns here, the recently proposed SOR algorithms do not preserve any

sparsity that the original problems may have had. This is due to the

fact that algorithms as presented in [12] require the product of the

constraint matrix by its transpose, which can cause loss of both sparsity

and accuracy. In this work we shall present some explicit realizations

of the algorithms of [12,13] which will not require the multiplication

of the constraint matrix by its transpose. These computationally

*improved realizations which follow from the algorithms of [12] have not

been given explicitly before. The absence of such sparsity-preserving

algorithms has been a critical factor in preventing the application of

SOR methods to many large important but highly structured problems such

as economic equilibrium problems, transportation and network flow

problems. In addition some of the present realizations of the SOR

algorithms (e.g. (14) and (32) below) require only simple operations on

the rows of the constraint matrix, and hence very large problems can be

tackled by such SOR realizations, because only linear row arrays are

needed in the computations. These advantages become even more pronounced

if these linear row arrays are sparse and hence can be stored in packed

form.

The paper is organized as follows. In Section 2 we give an SOR

algorithm for the symmetric linear complementarity problem or equivalently

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
This material is based upon work supported by the iational Science
Foundation under Grant No. MCS-790166.
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for the quadratic programming problem with nonnegativity constraints only.

This is aspecial case of the general algorithm presented in [11] but

given here, in a simple explicit form in terms of the rows of the matrix

defining the problem, principally to make it preserve problem sparsity.

In Section 3 we consider a separable quadratic programming problem and

give a version of the SOR algorithm of [12] which does not require multi-

plication of the constraint matrix by its transpose. Hence this present

form of the algorithm is now ideally suited for large sparse problems. In

Section 4 two sparsity-preserving SOR algorithms for linear programming

* are given. One is based on finding the "smallest" optimal primal-dual

solution (LPSORI) [13] and the other is based on perturbing a linear

program to a separable quadratic program and then solve the latter by the

method of Section 3 (LPSOR2) [12]. Computational experience with a

version of LPSORI [9] on problems of size up to 800 constraints and 1000

variables and the non-sparsity-preserving version of LPSOR2 [12] have

been very encouraging. It is hoped that further refinements will make

SOR methods simple, robust and commercially viable methods for solving

very large separable quadratic and linear programs.

We briefly describe now the notation used. All matrices and vectors

are real. For the mxn matrix A we write AcRmXn and denote row i

by Ai, column j by A-j and the element in row i and column j by

Ai. For x in the real n-dimensional Euclidean space Rn, element i

ia denoted by xi and x+ will denote the vector with components

(x )i = max {xi,O}, i=l,...,n. All vectors are column vectors unless

transposed by the superscript T. lixil will dencte the 2-norm,



=~ n~ x2 A matrix C in Rflxfl is positive semidefinite if

x TCx > 0 for all x in Rn and positive definite if xT Cx > 0 for

all nonzero x in Rn. For brevity we shall sometimes omit mentioning

the dimensionality of a vector or matrix, it being obvious from the

context. The vector e will be a vector ones in a Euclidean space of

appropriate dimension. For a twice differentiable function O:R x<RnR,-

V o(uv) will denote the mxl gradient vector with elements

W*UMv i..m Vv$O(u,v) will denote the nxl gradient vector'

with elements 30(uv) ,i=1 9... nq V*(u,v) u [u ,] and V2 (u,v)

will denote the Hessian in R(n+m)x(nin) with submatrix components

denoted as follows

(uv Vuvu(u)

v2.u ~ V V:(). VVvO(UMv)

21' S



-4-

'* 2. SOR Algorithm for the Symmetric Linear Complementarity Problem

We consider here the problem of finding z In Rn  such that

Mz + q 0. O, z > 0, zT(Mz+q) = 0 (1)

where M is a symmetric matrix in Rkxk and q ERk. Conditions (1)

are [10] the necessary optimality conditions for the quadratic program-

mting problem

minimize ZzTMz + qTz subject to z > 0 (2)• . zRkl

Conditions (1) are sufficient for z to solve (2) whenever M is

positive semidefinite [10].

In [4,6,11] iterative SOR methods have been proposed for solving

(1), but without paying any special attention to possible sparsity that
" 1the problem may have. We give below an SOR algorithm based on that of

[11) in which any sparsity that exists is left undisturbed. If we

define

O(Z TMz + qTz (3)

then the SOR algorithm for solving (2) can be represented as a gradient

projection algorithm of the following type

1+1 = 2z= ( 1 z
z (z-w(Ve(z ))-IV z(z1  ,. . . . . +1.. ,z (4).1 j 1iJ1j

j=l , . . . .

where w is the relaxation factor or stepsize that must be in the open

Interval (0,2) and i represents the ith iteration. More specifically

we have the following.



LCPSOR Algorithm

Choose zO Rn, - (0,2). Having zi compute ZI+I as follows:

i+ 1 1 1 -M kz (zj-WM -j - =I +=IM. z +qJ)5+(5

for j>l

The following convergence theorem follows directly from [i].

Theorem 1: LCPSOR Convergence

() Let M be symmetric. Each accumulation point of (5) solves

(1). If in addition M is positive semidefinite then each

accumuiation point of (5) solves (2) as well.

(ii) Let M be symmetric and positive semidefinite and such that

Mz + q > 0 for some zc (6)

Then the sequence {zi I of the LCPSOR algorithm (5) is

bounded and has an accumulation point that solves both (1)

and (2).

(iii) Let M be symmetric and positive semidefinite and such that

problem (1) (or equivalently problem (2)) has a nonempty

bounded solution set. Then the sequence [zi} of the LPSOR

algorithm (5) is bounded and has an accumulation point that

solves both (1) and (2).

(iv) Let M be symmetric and positive definite then the sequence

{z i} of the LCPSOR algorithm (5) converges to the unique

solution z of (1) and (2).

Ii
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Proof

Parts (i), (ii) and (iv) follow from Theorem 2.1, Theorem 2.2 and

Corollary 2.2 of [11] respectively. To establish (iii) we note that

from Lema 2.3(b) of [11] that if the sequence {zI} of (5) is
Rk

unbouned then there exists a R such that

0 .M =O0.q Y o

This contradicts the boundedness assumption on the solution set of (1)

since if i solves (1) then i + X) also solves (1) for all X > 0

because z + X O, M(i+Xy) + q 0 and

T T
0 < (i+Xy) (M(i+Xi)+q) = )qTy < 0. 0

.

"
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3. SOR Algorithm for Separable Quadratic Programming

We consider here the separable quadratic program

minimize 1xDx + cTx subject to Ax > b, x>0 (7)
xERn I

where D is a positive diagonal matrix in Rnxn, AeRmXn, ce Rn and

bcRm. For more general quadratic programs see [12]. Associated with

this quadratic program is the dual quadratic program [5,17,10]

maximize -1 xxTDx+bTu subject to Dx-ATu-v+c =0,(u,v) O (8)

(x,u,v)cRn+m+n 2

which upon elimination of x by using the constraint relation

x = D I(ATu+v-c) (9)

gives

minimize (ATu+v-c)TD'l(ATu+v-c) -bTu subject to (u,v)aO (10)-
• (u,v)cRm+n

This problem (10) is now precisely of the form (2) and the LCPSOR

algorithm (5) can be applied to it easily. Because our principal

interest here is sparsity preserving we shall spell out the algorithm

for solving (10) explicitly. Define the objective function of (10) as

( : (A u+v-c)TDl(ATu+v-c)-
gu'v:= -'( Tuv~c) b~u(11)

then

AD -1(A Tu+v-c) - b

VO(u,v) = (12)

Tr

Ii

a a



-8-

and

= ED'IAT  AD- (13)

Now the SOR algorithm for solving (10) can be stated as

Ui+l= (ui -i i ...... ! U Ojl' .... m ) )v +j (Vuuo(¢ i)j

j=l, .... ,m

?,.]~+"= (vi(,,ou. ," :. ,.Cu '+'.vils ..... .v.,' .v] .Vi...:. v".i
,J=l, ..... n

where w is a relaxation factor in (0,2). More specifically we have

the following.

QPSOR Algorithm
0 0m+n

Choose (uO,v 0) + n, we (0,2). Having (u1,v1) compute

(u l,v ) as follows:
.

:i., °s"" ] (u! w, o , , (Ao-" ( "J" (A').,,i+" +, m (AT). ui+,,".c).-b +,= ,
*1u J (u A IAD-,2 j. 9.=1 k II z +

for j>l
J= .. (14)

Pi vI+  (vI -w(ATu i +l + vi - 0))

Note that any sparsity or structural properties that the matrix A

may have are not destroyed in the QPSOR algorithm as would be the case

In [12], and in fact may be taken advantage of in the present algorithm.
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Remark 2

The iteration (14) is very well suited for matrices A which have

a pronounced row structure, for example if A is sparse and the nonzero

elements of each row can be easily located without search. On the

other hand if the matrix A has a pronounced column structure, then

the following alternate but equivalent iteration to (14) may be

preferrable:

+ .( ... .i T  Tu h IIA.D1 _ . U ... um)A+v -c )D (AT). -b+))

j=1,9.... m( 4)
(14')

v = (v -c(u A*..+v-c.)) , j=l,....,n

Theorem 2: QPSOR Convergence

(i) Each accumulation point (u,v) of the sequence {(u',vi)}

generated by the QPSOR algorithm (14) solves (10), and the

corresponding x determined by (9) solves the quadratic

program (7).

(ii) Let the feasible region of the quadratic program (7) satisfy

the Slater constraint qualification

{xlAx>b, x>O} 0 0 (15)

1 1
Then the sequence {(u ,v )} of the QPSOR algorithm (14) is

bounded and has an accumulation point (u,v) and the

corresponding x determined by (9) solves (7).
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Proof

(1) Follows from Theorem l(i) and the duality theory of quadratic

programing [10, Theorem 8.2.5].

(ii) Because of (15) there exist a 6 > 0 such that the perturbed

positive definite quadratic program

minimize -xTDx + cTx subject to Ax> b + e6, x > e8

xeRn 2

has a solution RERn with corresponding multipliers

(UV), Rm+n that satisfy the Karush-Kuhn-Tucker conditions

DR + c -AT - V = 0, AR >'b + e6, R > e6, 0 > 0, V> 0

u (AR-b-e) = 0, V = 0

Hence

I = DI(ATa+V-c) > e6 > 0
.(16)

AD"I(ATu+v-c)-b > e6 > 0

Conditions (16) are equivalent to condition (6) for problem (10). Hence

iby Theorem l(ii) the sequence {(u ,v )) of the QPSOR algorithm (14) is

bounded and has an accumulation point (u,v) which solves (10). Hence

the corresponding x determined by (9) solves (7). 0
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4. SOR Algorithm for Linear Programing

We consider finally the dual linear programs

minimize c'x subject to Ax b, x > 0 (17)
xERnm

and

maximize bTu subject to ATu < c, u > 0 (18)
ueRm

where AeRxc, c Rn and bERm. It is well known [2] that solving

either (17) or (18) is equivalent to solving both (17) and (18) which

in turn is equivalent to solving the linear complementarity problem

Ny + p 4 0, y ?O,yT(Ny+p) = Tp 0  (19)

where

N= AT, p= c, y= x R k k= n + m (20)

Note that N is skew symmetric, that is N + NT = 0 and hence

U yTNy = 0. As proposed in [13] one way of solving the linear program

(17) is to find the closest point to the origin, in the 2-norm, of the

solution set of (19). That is we shall solve the quadratic program

Minimize I Ifyll 2  subject to Ny + p 4 0, y 4 0, pTy 0 (21)

Note that under the constraints Ny + p 4 0, y > 0, the constraint

py 0 is equivalent to py 0 since 0 py= T (Ny+p 0.

The dual to the quadratic problem (21) is [5,17,10]

p.
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maximize -tlIylt pIs subject to y-NTs-t+Bp= 0 (s t, )>O (21)

(y,st, B)cR3k+

Elimination of y by using the constraint relation

= y= NTs + t - Op (22)

gives the quadratic program

minimize .jN s-Bp+tJJ +pTs subject to (s,t,$)>O (23)
. (s,t ,o)cR2k~l

Problem (23) and consequently problem (21) can be solved by the SOR

method of Section 3. For that purpose it is convenient to let

*(st,a) equal the objective function of (23) that is

*(s,t,8):= IIINTs-ep+tI 2 + pTs (24)

and consequently

NTs~op+t) +p

V*(s,t,0) = NTs - $p + t (25)
UzpT(NT s-op+t)

NNT N .NP N~ [NT I -p]

V2 4s~t,O) =NT I -P = (26)

pTNT p T pTPJ p

it
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It is obvious from (26) that V2O(s,ts) is positive semidefinite.

We can now state an SOR algorithm for solving (23) based on QPSOR.

LPSORI Algorithm

Choose (s ,t , ) c R k+l, I w (0,2). Having (siItis i  compute

M+ i+l iM(s i,t 0, 1) as follows:

. -- i( W J (1T, i+l- k (T ii i
!= (SI (N( I (NT.s += (NT.s- p+t)+pj))+, j=l,....,k

for j>l

ti+ = (ti-w(NTsi+l- i p+t1)) (27)

i+1 (,i+_wp (Ns i+-0ip+ti+I))+

Parts (i) and (ii) of the following convergence theorem follow

directly from Theorem 2(i) and Theorem 1(ii) above respectively.

Theorem 3: LPSORI Convergence

(i) Each accumulation point (st,$) of the sequence

{(s i,ti,0i)) generated by the LPSORI algorithm solves the

dual program (23) and the corresponding (x) determined

by (22) solve the dual linear programs (17)-(18).

(ii) If there exist (s,t,O)R 2k+l satisfying VO(s,t,a) > 0,

then the sequence ((s i,t ,i ) generated by the LPSOR1

algorithm is bounded and has an accumulation point.

n i i I i l i I II1" -''.... .
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Note that Theorem 2(ii) does not apply here because

Ny + p > 0, y > 0 imply that pTy > 0 and hence we cannot satisfy

the Slater constraint qualification that there must exist a y

satisfying Ny + p > 0, y > 0 and pTy < 0. We further note that

the condition VO(s,t,s) > 0 is sufficient but not necessary for

*i i i
the boundedness of the sequence {(s ,t ,S1)}. Numerical experiments

have revealed no serious problems with unboundedness of the sequence

{(s i,t i i)} generated by the LPSORI algorithm.

We conclude by giving a sparsity-preserving version of the SOR

algorithm for solving a linear program that was proposed in [12].

This method is based on the fact [14] that the linear program (17) is

solvable if and only if the quadratic program

minimize xTx + cTx subject to Ax > b, x > 0 (28)
xeRn  

=2

is solvable for all cc (0,Z) for some i> 0. Furthermore the unique

solution of (28) is independent of c for c (0,) and is the

closest solution of the linear program (17) to the origin in the 2-norm

[14]. Note that Z may be infinite in some special cases. Problem

(28) can be solved then by the QPSOR algorithm of Section 3. From (8)

the dual to the quadratic program (28) is

maximize -EXTx+bTu subject to ex-ATu-V+C=0, (uv)>O (29)

(x,u,v)cRn+m+n

which upon elimination of x by using the constraint relation

x u l(ATu+vc) (30)

....................... .............................. ........ ,
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gives

minimize IIAu+v-c - ebTu subject to (u,v) > 0 (31)
(U,v)cRm+n

Note that (31) is the classical exterior penalty function [7]

associated with the dual linear program (18). However the perturba-

tion results of [14] give the stronger result that c in (31) need

not approach zero in order for x defined by (30) to be a solution

of (17). In other words if we let (u(c), v(£)) be a solution of

(31) for EE (0,) then x - (ATu(£)+ v(c) -c) is independent of

c and is the closest solution of the linear program (17) to the

origin in the 2-norm. Note however (u(£), v(c)) need not be a

solution of the dual linear program (18) for e (0,i), but each

accumulation point of {(u(£i), v(ei))} will be a solution of (18)

if {ci} is a decreasing sequence converging to zero. We can now1l
solve (31) by a sparsity-preserving algorithm which follows directly

from the QPSOR algorithm of Section 3 by replacing D by eI.

LPSOR2 Algorithm

Choose (u 0,v 0 ) c R + (0,2) and C > 0. Having (u ,vi)

determine uI+ 1, vi M as follows:.

____ -1 T 1+1 m 3+)-b)

U =U' (lA (~ I A + (AT).U +vi)cb)J JJ1 =1 3 +
for J>1 =1,....,m (32)

vi l= (vi'w(ATui+l+vi 'c))+
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Note that this LPSOR2 algorithm, unlike the algorithms proposed

in (12], will preserve any sparsity the matrix A may have and there

is no need to compute AT as was done in [12] and thereby destroying

any sparsity that A may have had.

The following convergence theorem follows directly from the con-

vergence theorem of the QPSOR algorithm, Theorem 2 and the perturbation

results of [14].

Theorem 4: LPSOR2 Convergence

() Let the linear program (17) have a solution. There exists a

real positive number such that for each e in the

interval (O,Z), each accumulation point (u,v) of the

sequence {(u ,vi)I generated by the LPSOR2 algorithm (32)

solves (31) and the corresponding x determined by (30) is

independent of c and is the (unique) solution of the linear

program (17) which is closest to the origin in the 2-norm.

(ii) If in addition to the assumptions of part (I) the constraints

of the linear program (17) satisfy the Slater constraint

qualification (15) then the sequence {(u i,vi)} of the

LPSOR2 algorithm (32) is bounded and has an accumulation

point for each ec (0,Z).

* - ."
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